Detailed marking instructions for each question

Notes:

1. Any attempted unit conversions must be correct for award of \bullet

Commonly Observed Responses :

1. For $(194 \times 50)-2$ leading to 9698 .
award $1 / 2 \times \checkmark$
2. For $(194+2) \times 50$ leading to 9800 .
award $1 / 2 \times \checkmark$
3. For 194×50 leading to 9700 . award 0/2 xx

	uest	Generic scheme	Illustrative scheme	Max mark
2.	(a)	Ans: (£)2600 - ${ }^{1}$ Strategy: know to calculate $2 \cdot 5 \%$ of $£ 6000$ - ${ }^{2}$ Process: calculate $2 \cdot 5 \%$ of $£ 6000$ - ${ }^{3}$ Strategy/process: add commission to basic salary	- ${ }^{1}$ evidence ${ }^{2}{ }^{2} 150$ - ${ }^{3} 2600$	3

Notes:

1. Accept $6000 \div 2 \cdot 5$ as evidence of knowing to calculate $2 \cdot 5 \%$.
2. \bullet^{3} is only available for adding commission to $£ 2450$.

Commonly Observed Responses:

1. For $2 \cdot 5 \%$ of $£ 9000=£ 225$ leading to a final answer of $£ 2675$.
award 2/3 $\times \checkmark \checkmark$
2. For $2 \cdot 5 \%$ of $£ 2450=£ 61 \cdot 25$ leading to a final answer of $£ 2511 \cdot 25$.
award 2/3 $\times \checkmark \checkmark$
3. For $2 \cdot 5 \%$ of $£ 3000=£ 75$ leading to a final answer of $£ 2525$.
award 2/3 $\times \checkmark \checkmark$
4. For $2 \cdot 5 \%$ of $£(9000-2450)=£ 163 \cdot 75$ leading to a final answer of $£ 2613 \cdot 75$.
award 2/3 $\times \checkmark \checkmark$

Question		Generic scheme	Illustrative scheme	Max mark
2.	(b)	Ans: (£) $\mathbf{1 8 7 0 \cdot 3 9}$ - ${ }^{1}$ Strategy: attempt to calculate gross pay - total deductions - ${ }^{2}$ Process: calculate net pay	- ${ }^{1}$ evidence $\bullet^{2} 1870 \cdot 39$	2

Notes:

1. For reference: total deductions $=729.61$

Commonly Observed Responses:

1. For candidates who calculate a gross salary in part (a) of $£ 2675$ leading to a net pay of £1945•39. award 2/2 $\checkmark \checkmark$
2. For candidates who calculate a gross salary in part (a) of $£ 2511 \cdot 25$ leading to a net pay of $£ 1781 \cdot 64$.
award 2/2
3. For candidates who calculate a gross salary in part (a) of $£ 2525$ leading to a net pay of £1795•39. award 2/2 $\checkmark \checkmark$
4. For candidates who calculate a gross salary in part (a) of $£ 2613.75$ leading to a net pay of $£ 1884 \cdot 14$. award 2/2

Question		Generic scheme	Illustrative scheme						Max mark
3.	(a)	Ans: Points plotted correctly - ${ }^{1}$ Communication: 4 points correct -2 Communication: all 6 points correct	D	${ }_{40}$	110	120	160	$\begin{array}{l\|l} \hline 200 & 260 \\ \hline 220 & 275 \\ \hline \end{array}$	2
Notes: 1. If candidate inverts all coordinates award 1/2									
Commonly Observed Responses:									
	(b)	Ans: Line of best fit - ${ }^{1}$ Strategy: consistent line of best fit	- ${ }^{1}$						

Notes:

Commonly Observed Responses:

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { (c) } & \begin{array}{l}\text { Ans: (days) } \\ \bullet \begin{array}{l}\text { Communication: answer } \\ \text { consistent with line of best fit }\end{array}\end{array} & \bullet 1\end{array}\right\} 1$

Notes:

1. Accept answer rounded to the nearest 10 days.

Commonly Observed Responses:

Notes:

1. For $1 \cdot 6 / 8$ followed by " $N o$ " with no other working. award 1/3
2. For $1 \cdot 6 / 8=5$ followed by blue gradient $6 \cdot 666 \ldots$... leading to "Yes". award 2/3
3. $\quad \bullet^{2}$ can only be awarded for two gradients with the same denominator, or the same numerator, or for two decimal fractions.
4. $\quad{ }^{3}$ can only be awarded where two gradients with the same denominator, or the same numerator, or for two decimal fractions have been compared.
5. Special case: If a candidate's answer for new trail is a top heavy fraction only \bullet^{3} is available. This mark is only available if reference is made to a gradient from the table.

Commonly Observed Responses:

Question		Generic scheme	Illustrative scheme	Max mark
5.	(a)	Ans: Bands D and A - ${ }^{1}$ Communication: state bands required	- ${ }^{1} 10 \times 14+1=141$, she needs bands D and A	1
Notes: 1. Bands D and A without working 2. For 140 lbs leading to bands D and A 3. D and A circled on the table 4. Accept $10 \times 14=141$ bands D and A (treat as bad form) 5. For any incorrect calculation leading to bands D and A				$\begin{aligned} & 1 / 1 \\ & 1 / 1 \\ & 1 / 1 \\ & 1 / 1 \\ & 0 / 1 \end{aligned}$
Commonly Observed Responses:				
	(b)	Ans: Shop 2 - ${ }^{1}$ Process: calculate cost for shop 1 -2 Process: calculate cost for shop 2 - ${ }^{3}$ Communication: conclusion consistent with working	- ${ }^{1} 49 \cdot 50$ - ${ }^{2} 45 \cdot 48$ - ${ }^{3}$ Shop 2	3
		Alternative Strategy: - ${ }^{1}$ Process: calculate discount for 1 shop -2 Process: calculate discount for other two shops - ${ }^{3}$ Communication: conclusion consistent with working	- ${ }^{1} 26 \cdot 30$ or $30 \cdot 32$ or $27 \cdot 81$ - ${ }^{2}$ remaining two - ${ }^{3}$ Shop 2	

Notes:

1. - ${ }^{3}$ can only be awarded for comparing 3 costs or 3 discounts.

Commonly Observed Responses:

1. Shop $1 £ 49 \cdot 50$, Shop $2 £ 30 \cdot 32$, Shop $3 £ 47 \cdot 99$ leading to conclusion Shop 2
award $1 / 3 \checkmark \times x$

Question		Generic scheme	Illustrative scheme	Max
6.		Ans: (£)6 286500 -1 Strategy/process: calculate one(£1)share -2 Process: calculate total number of shares - 3 Process: calculate total amount	${ }^{1} 2794000 \div 4=698500$ $\bullet^{2} 2 \cdot 50+2 \cdot 00+4 \cdot 00+0 \cdot 50=9$ $\bullet^{3} 9 \times 698500=6286500$	3
		Alternative Strategy 1 - ${ }^{1}$ Strategy/process: calculate one (50p) share -2 Process: calculate total number of shares - ${ }^{3}$ Process: calculate total amount	${ }^{1} 2794000 \div 8=349250$ $\cdot^{2} 1+4+5+8=18$ $\bullet^{3} 18 \times 349250=6286500$	
		Alternative Strategy 2 -1 Strategy/process: calculate the amount for any teacher other than Mr Young -2 Process: calculate the amount for another teacher -3 Process: calculate amount for final teacher and total amount	- ${ }^{1}$ Miss Smith 1397000 or Mr Jones 349250 or Mr Ross 1746250 - ${ }^{2}$ either of remaining two $\begin{aligned} & \bullet^{3} 1397000+349250+1746250 \\ & \quad+2794000=6286500 \end{aligned}$	

Notes:

1. \bullet^{2} can be implied by subsequent working.

Commonly Observed Responses:

1. For $2794000 \div 9=310444 \cdot 44$
$310444 \cdot 44 \times 4=1241777 \cdot 76$.
award 2/3 $\times \checkmark \checkmark$

Question		Generic scheme	Illustrative scheme	Max
7.	(a)	Ans: $20\left(\mathrm{~cm}^{2}\right)$ - ${ }^{1}$ Strategy: know how to calculate composite area - ${ }^{2}$ Process: calculate area	- ${ }^{1}$ Evidence of any valid strategy $\cdot^{2} \text { eg } 24-4=20$	2

Notes:

1. Accept $8+2 \times 2=20$ as bad form.

Commonly Observed Responses:

1. For $2 \times 8+1 \times 4+1 \times 4=24$.
award $1 / 2 \checkmark x$
2. For calculation of two rectangles eg $4 \times 3+4 \times 2=20$
award $1 / 2 \times \checkmark$

Notes:

1. If the cost of the enamel is not considered then only \bullet^{1} is available.
2. In the alternative strategy, if the candidates answer to \bullet^{2} is not divisible by $9, \bullet^{3}$ is only available for an answer rounded or truncated to 2 decimal places.

Commonly Observed Responses:

Question		Generic scheme	Illustrative scheme	Max mark
8.		Ans: $\frac{12}{100}\left(=\frac{3}{25}\right)$ - ${ }^{1}$ Strategy: evidence of identifying the blood groups that B+ can help -2 Communication: interpret stacked bar chart -3 Process: calculate fraction	- ${ }^{1}$ eg $A B+$ and $B+$ - ${ }^{2} 3$ people $A B+$ and 9 people $B+$ - $3 \frac{3+9}{100}=\frac{12}{100}\left(=\frac{3}{25}\right)$	3

Notes:

1. Correct answer with no working.
award 3/3
2. Accept $0 \cdot 12,12 \%$ or any fraction equivalent to $\frac{12}{100}$
3. For any answer other than $\frac{12}{100}, \frac{62}{100}, \frac{15}{100}, \frac{9}{100} \& \frac{3}{100}$, with no working award $0 / 3$

Commonly Observed Responses:

1. For an answer of $\frac{62}{100}$ ($B+$ row is taken from the chart instead of the $B+$ column) (with no working) award 2/3 $\times \checkmark \checkmark$
2. For an answer of $\frac{15}{100}$ (the complete bars for $A B$ and B are taken from the chart) (with no working) award $2 / 3 \times \checkmark \checkmark$
3. For an answer of $\frac{9}{100} \quad(B+$ only $)$ award 1/3
4. For an answer of $\frac{3}{100} \quad(A B+$ only $)$ award 1/3

Question		Generic scheme	Illustrative scheme	Max mark
9.	(a)	Ans: $\mathbf{2 7 . 4 2 (c m)}$ - ${ }^{1}$ Strategy: correct substitution in Pythagoras' Theorem -2 Process: calculate the missing side - ${ }^{3}$ Process: calculate length of the semi-circle - ${ }^{4}$ Process: calculate the perimeter of the shape	- ${ }^{1}$ eg $10^{2}-6^{2}$ $\bullet^{2} x=8$ ${ }^{-3} 3 \cdot 14 \times 6 \div 2=9.42$ $\cdot{ }^{4} 10+8+9 \cdot 42=27 \cdot 42$	4

Notes:

1. \bullet^{1} and \bullet^{2} are available for correct answer without working (Pythagorean triple).
2. \bullet^{1} cannot be awarded if candidate writes $6^{2}-10^{2}$.
3. \bullet^{2} can be awarded if candidate writes $6^{2}-10^{2}$ leading to $x=8$.
4. $\quad \bullet^{4}$ is only available for adding 10 to two previously calculated lengths.
5. \bullet^{4} is not available if the candidate states that they are adding calculated areas.

Commonly Observed Responses:

1. For $3 \cdot 14 \times 6+10+8$ leading to a final answer of $36 \cdot 84$. award 3/4 $\checkmark \checkmark \times \checkmark$
2. For $\frac{1}{2} \times 3 \cdot 14 \times 3^{2}+10+8$ leading to a final answer of 32•31. award 3/4 $\checkmark \checkmark \times \checkmark$
3. For $3 \cdot 14 \times 3^{2}+10+8$ leading to a final answer of 46•26. award 3/4 $\checkmark \checkmark \times \checkmark$
4. For $\frac{1}{2} \times 3 \cdot 14 \times 6+10+8+6+6$ leading to a final answer of $39 \cdot 42$ award $3 / 4 \checkmark \checkmark \checkmark \times$

Question		Generic scheme	Illustrative scheme	Max
9.	(b)	Ans: $13.56\left(\mathrm{~cm}^{2}\right)$ -1 Strategy: know how to calculate area of rectangular strip - ${ }^{2}$ Process: calculate the area of the strip	- ${ }^{1}$ evidence $\cdot{ }^{2}(27.42-0.3) \times \frac{1}{2}=13.56$	2

Notes:

1. $\bullet{ }^{1}$ is available for evidence of subtracting 0.3 and then multiplying by 0.5

Commonly Observed Responses:

1. For $27.42 \times \frac{1}{2}=13.71$ award $1 / 2 \times \checkmark$
2. For $0.3 \times 0.5=0.15$ award 0/2 xx
